منابع مشابه
Taylor Series and Asymptotic Expansions
There are several important observations to make about this definition. (i) The definition says that, for each fixed n, ∑n m=0 amx m becomes a better and better approximation to f(x) as x gets smaller. As x → 0, ∑m=0 amx approaches f(x) faster than x tends to zero. (ii) The definition says nothing about what happens as n → ∞. There is no guarantee that for each fixed x, ∑n m=0 amx m tends to f(...
متن کاملTaylor Series and Asymptotic Expansions
There are several important observations to make about this definition. (i) The definition says that, for each fixed n, ∑n m=0 amx m becomes a better and better approximation to f(x) as x gets smaller. As x → 0, ∑m=0 amx approaches f(x) faster than x tends to zero. (ii) The definition says nothing about what happens as n → ∞. There is no guarantee that for each fixed x, ∑n m=0 amx m tends to f(...
متن کاملThe Taylor Expansions
For simplicity, we use the following convention: n denotes a natural number, i denotes an integer, p, x, x0, y denote real numbers, q denotes a rational number, and f denotes a partial function from R to R. Let q be an integer. The functor qZ yields a function from R into R and is defined as follows: (Def. 1) For every real number x holds (qZ)(x) = x q Z. Next we state a number of propositions:...
متن کاملQuasi-kähler Groups, 3-manifold Groups, and Formality
In this note, we address the following question: Which 1-formal groups occur as fundamental groups of both quasi-Kähler manifolds and closed, connected, orientable 3-manifolds. We classify all such groups, at the level of Malcev completions, and compute their coranks. Dropping the assumption on realizability by 3-manifolds, we show that the corank equals the isotropy index of the cup-product ma...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Mathematics
سال: 2019
ISSN: 2199-675X,2199-6768
DOI: 10.1007/s40879-019-00389-6